- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Giacalone, Joe (1)
-
Guo, Fan (1)
-
Malkov, Mikhail (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Zank, Gary (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zank, Gary (Ed.)Abstract The observed energy spectra of accelerated particles at interplanetary shocks often do not match the diffusive shock acceleration (DSA) theory predictions. In some cases, the particle flux forms a plateau over a wide range of energies, extendingupstream of the shockfor up to seven fluxe-folds before submerging into the background spectrum. Remarkably, at and downstream of the shock we have studied in detail, the flux falls off in energy asϵ−1, consistent with the DSA prediction for a strong shock. The upstream plateau suggests a particle transport mechanism different from those traditionally employed in DSA models. We show that a standard (linear) DSA solution based on a widely accepted diffusive particle transport with an underlying resonant wave–particle interaction is inconsistent with the plateau in the particle flux. To resolve this contradiction, we modify the DSA theory in two ways. First, we include a dependence of the particle diffusivityκon the particle fluxF(nonlinear particle transport). Second, we invoke short-scale magnetic perturbations that are self-consistently generated by, but not resonant with, accelerated particles. They lead to the particle diffusivity increasing with the particle energy as ∝ϵ3/2that simultaneously decreases with the particle flux as 1/F. The combination of these two trends results in the flat spectrum upstream. We speculate that nonmonotonic spatial variations of the upstream spectrum, apart from being time-dependent, may also result from non-DSA acceleration mechanisms at work upstream, such as stochastic Fermi or magnetic pumping acceleration.more » « less
An official website of the United States government
